Managed Aquifer Recharge: Investing in the Invisible


  • Many aquifer are overstressed and risk being depleted over the coming decades, including Beijing, Jakarta, the Indus Basin Aquifer or the Arabian Aquifer. To restore healthy aquifer systems, we need to carefully monitor and manage our extraction, and as is often required, recharge with surface water when available.
  • Since December 2014 Beijing has been receiving water through the South-North Water Transfer Project from the Danjiangkou reservoir and diverted some of it for aquifer recharge adding an important dimension of flexibility to Beijing’s water supply system.
  • A functional investment framework is essential for addressing not only technical design, but other crucial elements, including social and environmental safeguards, as well as economic and institutional (regulatory, legal, organizational) dimensions, inter alia participation and monitoring.

For many decades, Beijing had been coping with a looming water crisis, and has been successful in managing it to a large extent. From 2000 to 2018, the city’s population expanded from 13.6 million to 21.5 million, and its economy grew almost tenfold from CNY316 billion to CNY3,033 billion. After an initial increase, Beijing managed to maintain the water use at the same level or even lower depending on the end use sector.

The problem, however, is that a majority of the supply was from aquifers, which accounted for about half of total water supply in Beijing. Continuous over-extraction sent the groundwater levels down from 16 meters in 2000 to just over 25 meters, although gradually recovering in the last few years. The over-exploitation of groundwater has brought a range of environmental and ecological consequences, including rivers running dry, land subsidence and vegetation degradation. It also increases the risks of depleting Beijing’s emergency water supply.

Beijing is not alone in facing these problems. The North China Plain has more than 160 pocket areas of groundwater depletion. Unsafe levels of groundwater extraction have sunk the city of Jakarta 2.5 meter in 10 years, forcing the government to announce a plan to relocate the capital. The Indus Basin Aquifer is the world’s second-most overstressed aquifer, with a depletion rate of about 8 km3 a year. The most overstressed aquifer, the Arabian Aquifer System, is already depleted.

To restore healthy aquifer systems, we need to carefully monitor and manage our extraction, and as is often required, recharge with surface water when available.

Managed aquifer recharge, a relatively new idea, is based on the principle of groundwater replenishment and water banking. This principle refers to the intentional recharge of water to suitable aquifers to maintain groundwater levels, and subsequently store this water for future use. Groundwater aquifers are typically located in soils or deeper rock layers beneath the surface. It requires careful technical design to ensure that water of sufficient quality can infiltrate the ground, stay underground, and be pumped out when needed. It can be used as an underground reservoir, except that it is invisible.

Plenty of research findings support the viability of the technology. But actual implementation at large scale is still rare. There is often a lack of understanding of cost and benefits. Seeing water “disappearing” can also make it challenging for such an idea to be accepted.

Nonetheless, the city of Beijing decided to give it a try. Since December 2014 it has been receiving water through the South-North Water Transfer Project from the Danjiangkou reservoir. By the end of 2019, this supply amounts to 5.2 billion cubic meters of water which accounted for about a quarter of Beijing’s total water supply during the same period. Apart from city supply, the Beijing Water Authority diverted some of the water to reservoirs and rivers, and some to aquifers as part of the comprehensive Beijing Capital Region Water Conservation Strategies.

They looked at groundwater storage capacity, recharge methods, different water sources and water quality and conducted trials to see how the groundwater levels change with recharge and pumping.

The idea of using water transferred from 1,432 km away to recharge the aquifer may seem crazy to many, but there are advantages to this: while the transfer project supplies a stable flow of water, local demand and supply fluctuate. The managed aquifer recharge can draw the excess water during low demand periods and help maintain a steady flow, and resupply through pumping when demand exceeds supply. In short, it adds an important dimension of flexibility to Beijing’s water supply system.

Innovative designs are critical for this relatively new method to provide local solutions. For example, in Beijing, sandstorms carry dusts from the Gobi Desert, which can slow down the recharge speed and eventually clog up the system, when deposited into riverbeds. Researchers can design recharge surface and depth in a way which utilizes wave actions from wind gusts to move deposits away from the center of the riverbeds, thereby increasing the speed the water goes down and reduce the costs of cleaning up.

More importantly, a functional investment framework is essential for putting managed aquifer recharge up to scale. Such a framework addresses not only technical design, but other crucial elements, including social and environmental safeguards, as well as economic and institutional (regulatory, legal, organizational) dimensions, inter alia participation and monitoring. The capacity for the operation and maintenance is also key for the success of managed aquifer recharge.

Picture source: Beijing Water Authority

A sound management plan is crucial for success of managed aquifer recharge. This is not only related to technical operations and maintenance, but also to cost benefit sharing mechanisms. It is easy to collect fees from connected consumers, but much more difficult if people are just pumping on their own. A good plan and strict enforcement therefore ensure the investment will not only see water “disappearing” into the aquifer, but also “coming back” with greater value at the times needed.

As of 2020, the experimental recharge in Beijing has been going on for six years and the results are promising. It shows that storing water underground is technically feasible. In addition to environmental benefits, recovering groundwater levels have shown to be economically and financially more cost effective compared with available surface storage options. An invisible storage with managed aquifer recharge is a better investment option for Beijing, and probably many other areas facing water scarcity.

Cai is a Water Resources Specialist at ADB's East Asia Department.
He designs and implements investment and technical assistance projects for better water, environment, agriculture and land management in East Asia countries, where he enjoys the opportunity to approach the duel challenges of environment conservation and economic development through integrated infrastructure, technology, policy, and capacity building solutions. Before joining ADB in 2019, Cai worked at UNESCO-IHE Institute for Water Education in the Netherlands, and the International Water Management Institute in South Africa and Sri Lanka.

Mingyuan worked in urban and water projects in Sri Lanka, Bangladesh, and India in South Asia Department of ADB and water and environment project in Mongolia and PRC in East Asia Department in Asian Development Bank. Prior to ADB in 2010, he worked in urban environment and water projects PRC and Philippine in urban and water unit in East Asia and Pacific in World Bank (Beijing).

Leave a Reply

You have to agree to the comment policy.